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Abstract - Critical two phase flow is a very important  phenomena in nuclear
reactor technology for the analysis of  loss of coolant accident. Several recent papers,
Lee and Shrock(1990), Dagan(1993) and Downar(1996) , among others,  treat the
phenomena using  complex models which require heuristic  parameters such as
relaxation constants or interfacial transfer models. In this paper  a mathematical
model for one dimensional non equilibrium and  non homogeneous  two phase flow  in
constant area duct is developed. The model is constituted of three conservation
equations type mass ,momentum and energy. Two important variables are defined in
the model : equilibrium constant in the  energy equation and the impulse function in
the  momentum equation. In the energy equation, the enthalpy of the  liquid phase is
determined by a linear interpolation function between the liquid phase  enthalpy  at
inlet condition and the saturated liquid  enthalpy  at local pressure. The interpolation
coefficient is the equilibrium constant. The momentum equation is expressed in terms
of  the impulse function. It is  considered that there is slip between the liquid and
vapor phases, the liquid phase is in  metastable state and  the vapor  phase is in
saturated stable state.The model is not  heuristic in nature and does not require
complex interface transfer models. It is proved numerically that  for the critical
condition the partial derivative of two phase pressure drop  with respect to the local
pressure or to  phase velocity must be zero.This criteria is demonstrated by numerical
examples. The experimental work of Fauske(1962) and Jeandey(1982) were analyzed
resulting in estimated  numerical values for  important parameters like slip ratio,
equilibrium constant  and two phase frictional drop.
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1. Introduction

  Two-phase critical  flow is important in nuclear reactor safety for the  analysis
of loss of coolant accident scenarios (LOCA) and in many other industrial
applications. During the  60’s and early 70’s   various models were developed such as
those by  Fauske (1962), Moody (1965) and Henry & Fauske  (1971). These models
were not  realistic  for many practical cases. The marked departure from equilibrium
when flashing occurs requires models which would include this phenomena . The idea
which is widely used is to correlate the pressure undershoot  with a parameter called
“relaxation constant”. Lee & Shrock (1990)  presented a model for critical two phase
flow with boiling inception  using 3 differential  equations for conservation of mass ,
energy and momentum and a function which relates flashing pressure undershoot
with relaxation constant in exponential form. They used   simplifying assumptions
such as  homogeneous flow,  vapor phase  in saturated stable state , the liquid phase is
in metastable state  (superheated)   and Kroeger’s critical flow velocity criterion.
Dagan (1993)  presented a model for critical flashing two phase flow model  with two
continuity equations and two momentum equations (one for each phase), one energy
equation for the mixture  and  a function which relates the  void  spatial distribution
and bubble growth .The interfacial terms are expressed by experimental correlations.
Downar (1996)  presented a non equilibrium relaxation model for one-dimensional
flashing liquid flow , with three equations of  mass,  momentum and energy
conservation  and introduced an equation relating  vapor generation rate  with
relaxation time . Generally ,  the relaxation time as well as interfacial terms are
empirical in nature.

The present  approach for  non equilibrium two phase flow  in constant area
ducts  treats the problem as a completely   macroscopic problem  independent of
interface transport heuristic  correlations.The model  is represented by the sum of the
separate equation of each phase resulting in 3 mixture conservation equations of mass,
energy and momentum . The mixture is considered to be   non homogeneous
characterized by the slip ratio . It is assumed that the vapor phase  is in saturated
stable state and the enthalpy of the liquid  phase is determined by a linear interpolation
function between the enthalpy of liquid at the inlet condition and the enthalpy of
saturated liquid at local pressure .The interpolation coefficient is called the “
equilibrium constant ” (ζ ).

The momentum equation is expressed in terms of  the impulse function as
defined by Shapiro (1954). In this form we can conclude that the change in impulse is
equal to the two phase frictional pressure drop  times the duct area . The terms in the
three differential equations of conservation  are  arranged in such a manner that they
can be easily integrated  transforming them into three non linear algebraic equations.
In  addition, there are  the thermodynamic relationships and the definitions for void
fraction and  slip ratio , resulting in a  system of 12 non linear algebraic equations .

It is hown that the critical flow condition can be expressed by the partial
derivative of pressure loss with respect to static pressure is equal to zero .



2. Model
Governing physical equations :

Consider a  two phase flow of steam and water in a  constant area duct  . The
stagnation conditions at the inlet  of the duct are characterized by the pressure po ,
temperature T0 and quality xo . At any distance z downstream , the flow variables and
the thermodynamic  properties are described by the one dimensional steady state
continuity ,  energy  and momentum equations obtained by the addition of the separate
phase  flow equations giving the mixture flow equations.

a)  The continuity equation  :
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Where M t

•
 is the total rate mass flow  at z=0 and constant at any  section z.

b) The energy equation :
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Where (M t

•
ho) is the total energy  per unit time at z=0 ,hg   is the enthalpy of

vapor phase at the saturation condition.
The liquid and vapor phases are at different temperatures but at the same

pressure being in a state of thermal non equilibrium .Chemical properties are such that
the phases are assumed to be in chemical equilibrium. The thermal non equilibrium is
proposed to be represented by an empirical correlation to calculate the liquid phase
enthalpy as follows :

h h hl ls lo= ⋅ + − ⋅ζ ζ( )1                                                                                   (3)
 hls is the liquid phase enthalpy at saturated condition , hlo is  liquid phase

enthalpy  at inlet conditions, ζ is the interpolation constant and  varies between  0 and
1. To explain the physical meaning of ζ , consider  a two phase flow where  friction
changes the static pressure consequently changing the  vapor phase temperature . If
there is an instantaneous energy transfer between the vapor phase and liquid phase  the
equilibrium between the two phases  occurs and the enthalpy of the liquid phase is hls

which is represented by ζ =1. However, if there is no energy  transfer between the two
phases, the liquid phase  enthalpy is constant along the flow and the same as the  inlet
condition hlo . This represents the limiting  non-equilibrium condition and it is
represented by ζ =0 . In a real case  where there is a thermal non equilibrium  between
the two phases, a fraction  ζ of the liquid has enthalpy hls and the other fraction (1-ζ )
has enthalpy hlo . These two fractions can be added,resulting in an equivalent liquid
phase metastable state with enthalpy hl.

However , the liquid phase entropy and  temperature can not be  obtained by the
same  interpolation function as for the  enthalpy , but it can be estimated by
thermodynamic relationships.  The liquid phase specific volume  is assumed  to be the



same as the specific volume in saturation condition since  the liquid  is assumed
incompressible.

c) The momentum equation :
The impulse function I is defined as:
    I=p A M u M ug g l l⋅ + ⋅ + ⋅� �

The momentum equation in terms of the impulse function is:
dI

dz
d= − ⋅ ⋅τ π0

The impulse function  was used earlier by Shapiro (1954) for single phase flow
and τ 0  is the local wall frictional shear stress . Integrating the above equation  results :

I I d dzo

z
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0

Io  is the total impulse at the inlet condition and is equal to poA .
Defining the frictional pressure drop ∆ p as ;

                          ∆ P=
4

0d
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therefore the momentum equation can be expressed as :
                        I I P Ao= − ⋅∆
For the numerical calculations the variable I is split into its original form as

follow:
 p A M u M ug g l l⋅ + ⋅ + ⋅� � = I P Ao − ⋅∆                                                      (4)

d) Definitions:
The void fraction α  is defined by the following equations ;
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The slip ratio is defined by :
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e) Thermodynamic relationships :
 For the saturation conditions the vapor phase enthalpy hg ,the liquid phase

saturation  enthalpy hls , vapor phase specific volume vg , liquid phase specific volume
vl and the mixture pressure p  are given as a functions of saturation temperature T by
the following polynomials :
 (C1.T-1).(hg-2501)+C2 .T 2 + C3.T =0                                                                   (8)
 C4+C5.T+C6.T2 + C7.T3  + (C8.T-1).hls =0                                                            (9)
 C9+C10/TK+C11/TK2+C12/TK3+C13/TK4+C14/TK5+C15.vg /TK -vg =0            (10)
      where     TK=T+273.15
 C16+C17.T + C18.T2 +C19.T3 + C20.vl .T  - vl  =0                                               (11)
 C21+C22.T + C23.T2 + C24.T3 + (C25.T-1).p=0                                                  (12)



Equations 8,9 10 ,11 and 12    are polynomials of the  saturation temperature T
found by curve fitting from steam tables valid from 100 °C to 330 °C. The coefficients
C1,C2,......C25 are presented in Appendix A.

The following criteria for critical two phase flow is proposed in the present
paper:
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3. Method of computing
Equations (1) to (12) form a set of 12  non linear algebraic equations  with total

number of 13 dependent variables plus 2 model parameters resulting in 15 unknowns ,

which are  M M h h u u h p p v v S Tg l g l g l ls g l

• •
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.

, ζ α∆ . The known  boundary

conditions and geometrical parameters are  M t

⋅•

, po, ho, hlo and A. So if any  3 unknown
parameters  have their  numerical values specified , the  simultaneous solution of the
equations (1) to (12) can be done resulting in  the numerical values for the all
remaining unknowns. The 12  equations are solved by Newtom - Raphson  method .
When calculating the critical conditions, the equation (13) is included so the number
of unknowns to be  specified are reduced to 2 instead of 3.  Since  the system of
algebraic equations is non linear , it is expected to have more than one solution .
Generally any solution is one of the following  three types :

1-real solution with  acceptable  values where the flow variables  and thermodynamic
properties have  physical meanings;

2- real solution with non acceptable values when the flow variables  have no physical
meaning, e.g. negative absolute temperature or negative  absolute  pressure , and in
this case it is ignored.

3-Imaginary solution and in this case the Jacobean matrix is non-singular .

It is found that for all real acceptable  cases which were  analyzed  specifying
boundary values  for total mass flow , total energy , total impulse and geometrical
parameters, that there are two real solutions  corresponding to the sub-critical and
super-critical cases. When  the two solution coincide, the critical condition is attained.
At this condition  the  two phase pressure drop  ∆ P is a maximum and this is
expressed by equation (13).
 4. Illustrative numerical  example :
Consider a constant area duct of 6.83 mm (0.269 in) diameter fed with steam water
mixture in thermodynamic equilibrium. A parametric study was done varying ζ and S
for  fixed boundary conditions as shown in Table I.



                     Table I - Illustrative example  numerical values.

Parameter Value

total mass flow  M t

⋅
    kg/sec 0.0944

total energy  M t

⋅
 ho    kJ/sec 189.6

 total impulse Io          N 93.14
Equilibrium constant ζ 0 or1
slip ratio S 2 , 6 or 20

Fig. 1  shows  the  calculated values for the outlet pressure  for any given value
of pressure drop for the above values of  slip S and ζ . It can be observed that for a
given  fixed ζ and S there is a maximum value of ∆ p which corresponds to the critical
flow condition. This  can be expressed mathematically by  equation (13) .
Mathematically, equation (13) represents an additional  boundary condition at the
critical conditions , resulting in an additional model equation .Therefore , for the
critical conditions we have 13 equations  instead of 12 , but  the total number of
unknowns is still 15. Therefore only two unknown values must be specified at the
critical condition.

 Fig. 2 shows the variation of vapor phase velocity ug with respect to ∆ P .

5. Analysis of  experimental works :

Fauske (1962) carried out several  experiments in an investigation work about
two phase critical flow . The test section was a constant area duct with 6.83 mm
(0.269 in) diameter  and 2.794 m (110 in) length equipped with 6 pressure taps along
the test section .A mixture of steam and water  with various steam quality is fed
through the test section attaining in all experiments critical conditions .

The boundary conditions were known , exit critical pressure was measured and
the non-equilibrium constant is assumed to be 1, since the test section is too long
allowing the mixture to reach equilibrium .With that data, using the present model, all
the flow variables are calculated including the two phase critical pressure drop and
slip ratio. Table  III shows the result of calculations for three cases where it can be
observed that the slip ratio for high steam quality  flows is about six.

Another experimental work, known as the super Moby Dick  experiments done
by  Jeandy (1981), were performed using a test section with inlet convergent nozzle
followed by a constant area duct with  20 mm diameter and  390 mm  length ending
with a divergent nozzle . A low steam quality or nearly saturated steam is fed to the
test section . Table IV shows the calculated results of  the two runs.

It was stated in Jeandy (1981) report  work  that the error in the void fraction
measurement is between  2% and 5% resulting in a possible lower limit for  void
fraction of α=0.85 for the experiment 20b340x. Using this void fraction value it was
calculated ζ =0.26 and  ∆ p=3.33 . Therefore, a 2% deviation in void fraction causes a
36% deviation in the calculated  ζ value  and 31% deviation  in ∆ p value. Under this
condition the sensibility of ∆ p and  ζ upon the α  values is very high. So, any



correlation based upon measurement of void fraction may contain a large margin of
error . From the calculated values for the critical velocity (ug=104 m/sec and  ul=69.3
m/sec ) one can observe that they are far from the sound speed in each phase. This
results are not in agreement with the Kroeger’s choking criteria used by Lee & Shrock
((1990).   

6-Closure
The main characteristic of this model is its simplicity , since only one new

simplifying assumption is introduced  to approximate the liquid phase enthalpy
through the definition of the equilibrium constant . In comparison with other models
where many new simplifying assumption are used with a wide range of new unknown
parameters needed , without clear advantage, this model present an alternative
advantageous solution .

Due  to its simplicity , this model allows a complete parametric analysis with
no need of any experimental correlation and their associated parametric values. Also,
due to the analytical nature of the model , sensitivity analysis can be performed
analytically .

The introduction of the impulse function in the momentum equation produce a
form much better suited for experimental purposes. Measurement of the  axial thrust
(impulse ) instead of void fraction can be done with better precision resulting in
correlations for equilibrium constant , slip ratio and pressure drop  with low margin of
error .

7-Nomenclature
A cross sectional area
L duct length
d diameter

M t

•
total mass flow rate

Mg

•
vapor phase mass flow rate

M l

•
liquid phase mass flow rate

ug vapor phase velocity
ul liquid phase velocity
x steam quality
α void fraction
p static pressure
po stagnation  inlet pressure
xo inlet steam quality
ho inlet enthalpy
T vapor phase temperature
hg saturated vapor enthalpy
hgo inlet vapor enthalpy
hl liquid phase enthalpy
hls saturated liquid enthalpy
hlo inlet liquid phase enthalpy
vg vapor phase specific volume



vl liquid phase specific volume
S           slip ratio
τ o local sheer stress
∆ p two phase frictional drop

Appendix  A
The constants for the thermodynamic polynomials are :
C1=0.002052097 C2=-0.005322287 C3=1.91654929
C4=0.498305            C5=4.15960702            C6=-0.009045956
C7=8.49203 10-7 C8=0.002200196 C9=-49.8427
C10=121447.28 C11=-117862882 C12=57033384642
C13=-1.37928 1013 C14=1.33911 1015 C15=253.91908
C16=0.000998075 C17= -0.0000023503 C18=2.3732 10-9

C19=-6.01205 10-12 C20 =0.002515487 C21=-0.2903
C22=0.02910004 C23=-0.000518091 C24=0.00000334699
C25=0.001304599
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Fig. 1 Calculated pressure loss (∆P) versus static pressure (P).
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Table II - Critical conditions for the Fauske experiments.

Measured Calculated
Run po

bar
x

%o
Mt

•

kg/sec

IO

N
ho

kj/kg
p

bar
Mg

•

kg/sec
Ml

•

kg/sec

ug

m/sec
ul

m/sec
vg

l/kg
vl

l/kg
hg

kj/kg
hl

kj/kg
T
°C

α ∆ p
bar

S

TSE-42 19.1 23 .1156 69.9 1334 4.87 .0366 .0789 401 66.8 387 1.09 2745 640.8 152 .9648 8.74 5.99
TSE-43 29.5 28 .1787 108.2 1508 7.24 .0655 .1132 505 83.9 271 1.11 2762 705 167 .9592 10.64 6.02
TSE-90 25.5 56 .0944 93.5 1995 5.88 .0564 .0379 511 84.9 327 1.1 2753 670.4 159 .9865 10.87 6.02

Table III- Critical conditions for the Super Moby Dick experiments .

Measured Calculated
Run po

bar
x

%o
Mt

•

kg/sec

IO

N
ho

kj/kg
α p

bar Mg

•

kg/sec
Ml

•

kg/sec

ug

m/sec
ul

m/sec
vg

l/kg
vl

l/kg
hg

kj/kg
hl

kj/kg
T
°C

ξ ∆ p
bar

S

234b4x 30 4 3.59 942 1080 .79 16.6 .2 3.389 93.6 62.2 117 1.17 2791 977 203 .22 6.09 1.51

20b340x 20 3.4 2.75 628 973 .87 11.2 .16 2.59 104.2 69.3 177 1.13 2778 859 185 .4 2.54 1.5


